How Visual Studio debugs containerized apps

Recently, I was looking into the internals of the Visual Studio debugger for the .NET Diagnostics Expert course. I was especially interested in how the Docker debugging works. For those of you who haven’t tried it yet, let me provide a concise description.

In Visual Studio 2019, when we work on the ASP.NET Core project, it is possible to create a launch profile that points to a Docker container, for example:

And that’s fantastic as we can launch the container directly from Visual Studio. And what’s even better, we can debug it! To make this all work, Visual Studio requires a Dockerfile in the root project folder. The default Dockerfile (which you can create in the ASP.NET Core application wizard) looks as follows:

FROM mcr.microsoft.com/dotnet/core/aspnet:3.1-buster-slim AS base
WORKDIR /app
EXPOSE 80
EXPOSE 443

FROM mcr.microsoft.com/dotnet/core/sdk:3.1-buster AS build
WORKDIR /src
COPY ["WebApplication1.csproj", ""]
RUN dotnet restore "./WebApplication1.csproj"
COPY . .
WORKDIR "/src/."
RUN dotnet build "WebApplication1.csproj" -c Release -o /app/build

FROM build AS publish
RUN dotnet publish "WebApplication1.csproj" -c Release -o /app/publish

FROM base AS final
WORKDIR /app
COPY --from=publish /app/publish .
ENTRYPOINT ["dotnet", "WebApplication1.dll"]

And that’s it. If we press F5, we land inside an application container, and we can step through our application’s code. It all looks like magic, but as usual, there are protocols and lines of code that run this machinery behind the magical facade. And in this post, we will take a sneak peek at them 😊.

Continue reading

How Ansible impersonates users on Windows

Recently, I hit an interesting error during a deployment orchestrated by Ansible. One of the deployment steps was to execute a custom .NET application. Unfortunately, the application was failing on each run with an ACCESS DENIED error. After collecting the stack trace, I found that the failing code was ProtectedData.Protect(messageBytes, null, DataProtectionScope.CurrentUser), so a call to the Data Protection API. To pinpoint a problem I created a simple playbook:

- hosts: all
  gather_facts: no
  vars:
    ansible_user: testu
    ansible_connection: winrm
    ansible_winrm_transport: basic
    ansible_winrm_server_cert_validation: ignore
  tasks:
    - win_shell: |
        Add-Type -AssemblyName "System.Security"; \
        [System.Security.Cryptography.ProtectedData]::Protect([System.Text.Encoding]::GetEncoding(
            "UTF-8").GetBytes("test12345"), $null, [System.Security.Cryptography.DataProtectionScope]::CurrentUser)
      args:
        executable: powershell
      register: output

    - debug:
        var: output

When I run it I get the following error:

fatal: [192.168.0.30]: FAILED! => {"changed": true, "cmd": "Add-Type -AssemblyName \"System.Security\"; [System.Security.Cryptography.ProtectedData]::Protect([System.Text.Encoding]::GetEncoding(\n    \"UTF-8\").GetBytes(\"test\"), $null, [System.Security.Cryptography.DataProtectionScope]::CurrentUser)", "delta": "0:00:00.807970", "end": "2020-05-04 11:34:29.469908", "msg": "non-zero return code", "rc": 1, "start": "2020-05-04 11:34:28.661938", "stderr": "Exception calling \"Protect\" with \"3\" argument(s): \"Access is denied.\r\n\"\r\nAt line:1 char:107\r\n+ ... .Security\"; [System.Security.Cryptography.ProtectedData]::Protect([Sy ...\r\n+                 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r\n    + CategoryInfo          : NotSpecified: (:) [], MethodInvocationException\r\n    + FullyQualifiedErrorId : CryptographicException", "stderr_lines": ["Exception calling \"Protect\" with \"3\" argument(s): \"Access is denied.", "\"", "At line:1 char:107", "+ ... .Security\"; [System.Security.Cryptography.ProtectedData]::Protect([Sy ...", "+                 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~", "    + CategoryInfo          : NotSpecified: (:) [], MethodInvocationException", "    + FullyQualifiedErrorId : CryptographicException"], "stdout": "", "stdout_lines": []}

The workaround to make it always work was to use the Ansible become parameters:

...
  tasks:
    - win_shell: |
        Add-Type -AssemblyName "System.Security"; \
        [System.Security.Cryptography.ProtectedData]::Protect([System.Text.Encoding]::GetEncoding(
            "UTF-8").GetBytes("test12345"), $null, [System.Security.Cryptography.DataProtectionScope]::CurrentUser)
      args:
        executable: powershell
      become_method: runas
      become_user: testu
      become: yes
      register: output
...

Interestingly, the original playbook succeeds if the testu user has signed in to the remote system interactively (for example, by opening an RDP session) and encrypted something with DPAPI before running the script.

It only made me even more curious about what is happening here. I hope it made you too 🙂

Continue reading

Writing network proxies for development purposes in C#

If you are developing, testing, or supporting web applications, you probably encounter situations when you need to record or modify HTTP traffic. Quite often, the browser request viewer might be enough, but what if you need to modify the traffic on the fly? Another challenging task is testing how your application behaves when put behind a load balancer or an edge server. There are many great HTTP proxies available in the market, including mitmproxy, Burp Suite, or Fiddler and they may be perfect in diagnosing/testing your applications. In this post, however, I am encouraging you to write small tools for your specific needs. There are many reasons why you may want to do so, such as the need for complex requests modifications, better control over the request processing, or customizations of the certificate creation. Of course, implementing the HTTP protocol could be demanding so, don’t worry; we won’t do that 🙂 Instead, we will use the open-source Titanium Web Proxy. The code samples in this post are meant to be run in LINQPad, which is my favorite tool for writing and running .NET code snippets, but you should have no difficulties in porting the samples to a C# script or a console application.

Continue reading

Synthetic types and tracing syscalls in WinDbg

Recently at work, I needed to trace several syscalls to understand what SQL Server was doing. My usual tool for this purpose on Windows was API Monitor, but, unfortunately, it hasn’t been updated for a few years already and became unstable for me. Thus, I decided to switch back to WinDbg. In the past, my biggest problem with tracing the system API in WinDbg was the missing symbols for the internal NT objects. Moreover, I discovered some messy ways to work around it. Fortunately, with synthetic types in WinDbg Preview it’s no longer a problem. In this post, I will show you how to create a breakpoint that nicely prints the arguments to a sample NtOpenFile syscall.

Continue reading

A story of fixing a memory leak in MiniDumper

MiniDumper is a diagnostic tool for collecting memory dumps of .NET applications. Dumps created by MiniDumper are significantly smaller than full-memory dumps collected by, for example, procdump. However, they contain enough information to diagnose most of the issues in the managed applications. MiniDumper was initially developed by Sasha Goldstein, and I made few contributions to its code base. You may learn more about this tool from Sasha’s or my blog posts.

Recently, one of MiniDumper users reported a memory leak in the application. The numbers looked scary as there was a 20MB leak on each memory dump. The issue stayed opened a few weeks before I finally found a moment to look at it. As it was quite a compelling case, I decided to share with you the diagnostics steps in the hope it proves useful in your investigations.

Continue reading